
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, Nov. 2022 3523
Copyright ⓒ 2022 KSII

This research is supported in part by the grant from the National Natural Science Foundation of China (Nos.
61572191 and 61602171), and Hunan Provincial Natural Science Foundation of China (Nos. 2022JJ30398,
2022JJ40278 and 2022JJ40277).

http://doi.org/10.3837/tiis.2022.11.004 ISSN : 1976-7277

Emotion-aware Task Scheduling for Au-
tonomous Vehicles in Software-defined

Edge Networks

Mengmeng Sun1,2, Lianming Zhang1, Jing Mei1*, and Pingping Dong1*
1College of Information Science and Engineering, Hunan Normal University

Changsha, 410081, China
2College of Cultural Communication, Henan Vocational Institute of Arts

Zhengzhou, 451464, China
[e-mail: 1311631214@qq.com, zlm@hunnu.edu.cn, JingMei1988@163.com ppdong@hunnu.edu.cn]

*Corresponding author: J. Mei and P. Dong

Received April 20, 2022; revised August 18, 2022; revised September 22, 2022; revised October 21, 2022;
accepted November 5, 2022; published November 30, 2022

Abstract

Autonomous vehicles are gradually being regarded as the mainstream trend of future devel-
opment of the automobile industry. Autonomous driving networks generate many intensive
and delay-sensitive computing tasks. The storage space, computing power, and battery ca-
pacity of autonomous vehicle terminals cannot meet the resource requirements of the tasks. In
this paper, we focus on the task scheduling problem of autonomous driving in soft-
ware-defined edge networks. By analyzing the intensive and delay-sensitive computing tasks
of autonomous vehicles, we propose an emotion model that is related to task urgency and
changes with execution time and propose an optimal base station (BS) task scheduling
(OBSTS) algorithm. Task sentiment is an important factor that changes with the length of time
that computing tasks with different urgency levels remain in the queue. The algorithm uses
task sentiment as a performance indicator to measure task scheduling. Experimental results
show that the OBSTS algorithm can more effectively meet the intensive and delay-sensitive
requirements of vehicle terminals for network resources and improve user service experience.

Keywords: software-defined edge network, autonomous vehicles, emotion model, task
scheduling

3524 Sun et al.: Emotion-aware Task Scheduling for Au-tonomous
Vehicles in Software-defined Edge Networks

1. Introduction

Autonomous driving is a technology for cooperatively manipulating cars in road environ-
ment perception, location calculation, and autonomous decision-making. Since the 1970s,
autonomous driving technology has been investigated, and recent developments have been
particularly remarkable. Google started developing self-driving vehicles in 2009 and demon-
strated a fully functional, autonomous driving prototype car in 2014 [1]. One of the most
promising advances in automotive engineering and research—the development of self-driving
cars—has spread across universities and the automotive industry worldwide over the past
decade [2]. With the development of autonomous vehicles, the increase in the number of au-
tonomous driving terminals will generate massive amounts of data. According to Huawei’s
forecast, approximately 180 ZB of new data will be generated worldwide every year by 2025
[3]. The application of autonomous driving generates higher performance requirements for
computing and storage resources in networks.

Cloud computing has problems such as high energy consumption and poor real-time per-
formance due to the high round-trip time caused by the long-distance communication link. In
contrast, edge computing is a three-layer computing model based on the cloud layer, edge
layer, and terminal layer [4]. Edge computing does not need to transmit tasks to the cloud data
center via long-distance communication links. Edge servers deployed near smart terminals and
equipped with faster 5G wireless networks can exchange data within milliseconds and can
provide low-latency and high-efficiency services to nearby terminal devices [5]. With these
high-quality network characteristics, edge computing technology has good application pro-
spects in autonomous driving [6].

The task carried out by the autonomous vehicle has strict response time requirements due to
its urgency and external environmental influence factors. However, due to factors such as
numerous tasks, insufficient computing power, and limited battery capacity in autonomous
vehicles, it is difficult to support intensive and delay-sensitive computing tasks. Therefore, it is
a key issue to migrate these tasks to an edge server near the smart terminal for computing so
that the edge server can execute and complete these delay-sensitive tasks for autonomous
driving as much as possible. The simple scheduling algorithm migrates tasks to the nearest
edge server using the principle of proximity. However, the computing capacity of the edge
server is limited [7]. If numerous autonomous driving tasks are concentrated, the edge server
may be overloaded. To avoid vehicle safety hazards, an important method to achieve load
balancing is task scheduling [8]. The separation of the control plane and data plane of soft-
ware-defined networking (SDN) realizes the flexible management of complex networks [9].
The SDN can be effectively integrated with the edge computing system architecture with the
advantages of global control and coordination to more flexibly manage network resources. In
view of the problems between the execution ability and resource requirements of autonomous
vehicle computing tasks and research, it is urgent to carry out task scheduling. In this paper,
we integrate the respective advantages of SDN and edge computing and investigate scheduling
strategies for computing tasks of autonomous vehicles in software-defined edge networks. The
main contributions of this paper are listed as follows:
• We propose a framework of software-defined edge autonomous driving networks. This

framework integrates the advantages of SDN and edge computing. With the separation
technology of the control plane and the data plane of the network equipment, the network
resources are centrally managed, and the task scheduling decision is more effectively
reached.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3525

• We introduce the concept of emotion and establish an emotion model for scheduling tasks of
autonomous vehicles as one of the innovations of this paper. By analyzing different cate-
gories of computing tasks for autonomous vehicles, an emotion model related to task ur-
gency is established. The emotion changes with the length of time that computing tasks with
different urgency levels remain in the queue. As an important factor for constraining task
scheduling, emotion satisfies the delay requirements of autonomous vehicles for computing
tasks.

• We develop an optimal base station (BS) task scheduling (OBSTS) algorithm for a soft-
ware-defined edge autonomous driving network. In the OBSTS algorithm, the SDN con-
troller allocates the optimal edge server resources for its prescheduling, compares the
emotion generated by the task queue waiting time with the emotion of the task itself, and
selects the best BS that meets the task scheduling.
The remainder of this paper is organized as follows: We introduce the related work in

Section 2. Section 3 describes the system model and its problem statement. In Section 4, we
develop the OBSTS algorithm. Extensive experiments are conducted in Section 5. Section 6
provides the conclusion and future work.

2. Related Works
With the rapid development of the Internet of Things, many researchers have performed much
research on the architecture of edge computing. All references in related works are analyzed in
Table 1.

Table 1. Research analysis of related works

Number Research content Pros and cons

[10] The optimization goal is to minimize the
total waiting time. In-depth research on optimization

problems can add important in-
fluencing factors. [11] A multistage greedy adjustment algo-

rithm is proposed.

[12] An efficient task scheduling algorithm is
developed.

Paper [12-13] conducts good re-
search on task scheduling but can
also optimize on latency and en-
ergy consumption for user result
return.

[13]
A stochastic optimization problem con-
strained by queue stability and energy is
formulated.

[14-16] The factors affecting the total delay in
the task scheduling process are analyzed. The impact of task result return

delay on total delay is improved,
and various constraints such as
queue backlog and deadline during
task scheduling can still be exam-
ined.

[17]
An architecture based on de-
vice-to-device cooperative mobility is
proposed.

[18] A scheme is proposed to maximize the
task to meet the delay requirement.

[19] Multiserver mobile edge computing
Internet of Vehicles is researched.

These papers have been optimized
for the waiting time of the task
backlog, and reasonable selection
of task computing resources on [20] A hybrid dynamic scheduling scheme is

proposed.

3526 Sun et al.: Emotion-aware Task Scheduling for Au-tonomous
Vehicles in Software-defined Edge Networks

[21] A lightweight heuristic solution is pro-
posed.

edge servers can be considered.

[22] A random load scheduling framework is
developed.

[23] A task placement strategy and schedul-
ing algorithm are proposed.

[24]
Edge computing strategies using SDN
and network functions virtualization are
investigated.

The attributes of tasks and re-
al-time scheduling is comprehen-
sively considered to minimize the
total system delay and energy
consumption. [25-26]

SDN and edge computing frameworks
are integrated into vehicle networks to
improve vehicle service latency.

[27]
A reputation incentive mechanism based
on software-defined vehicular edge
computing is proposed.

How edge servers filter from many
services is an important research
point.

[28] A fast search algorithm based on genetic
algorithm is proposed. The limitation is that each vehicle

can only belong to one volunteer
union. [29]

An inviting algorithm for contributors is
proposed to recruit cooperators through
social closeness.

[30] A wirelessly powered mobile edge
computing system is proposed.

Paper [30] focuses on minimizing
total energy consumption in wire-
less power supply.

Kao et al. [10] proposed a complete polynomial-time approximation scheme to solve the
tradeoff between delay sensitivity and energy cost of mobile devices. The scheme uses a di-
rected graph to represent multiple tasks and minimizes the total waiting time as the optimiza-
tion goal. SahniLin et al. [11] investigated the assignment problem of joint scheduling of
data-aware tasks and network cooperative flow edge computing and proposed a multistage
greedy adjustment (MSGA) algorithm. The joint problem is mathematically modeled in this
paper to minimize the overall completion time of the application. When addressing multitask
scheduling problems, they are formulated as an NP-hard optimization problem. To solve the
optimization problem, Liu et al. [12] developed an efficient task scheduling algorithm. The
basic idea is to prioritize tasks to ensure the completion time constraints of applications and
the processing dependencies of tasks and to reduce the average completion time of multiple
applications. Chen et al. [13] established a stochastic optimization problem constrained by
queue stability and energy in a two-layer edge computing system composed of a macro BS and
multiple micro BSs and focused on joint optimization of task scheduling and energy man-
agement decision-making. However, their approach disregards the delay and energy con-
sumption of the result returning to the user after the task scheduling is completed.

To improve the impact of the task result return delay on the total delay in the task sched-
uling process, the total weighted response time of task scheduling, including the delay caused
by task placement, scheduling processing, task result return, and the delay caused by I/O in-
terruption, were comprehensively considered [14-16]. To fully consider end user mobility,
Saleem et al. [17] proposed an edge computing architecture based on the device-to-device
cooperation mobile, taking into account the user’s mobility, distributed resources, task at-
tributes, user equipment energy consumption, and other constraints. The architecture uses

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3527

mobile sensing adjacent idle resources to obtain low-complexity effective task scheduling,
reducing the task calculation delay. However, it will be a challenge for multiple users of dif-
ferent applications to compete for shared resources. To solve the task scheduling and resource
allocation problems of different users, Zhao et al. [18] separately analyzed the scheduling
problem of delay-sensitive tasks in single-user and multiuser scenarios and proposed an op-
timization scheme that maximizes the probability of tasks meeting the delay requirements. The
resource coordination between the edge cloud and the remote cloud improves the success rate
of user tasks, but the task scheduling process does not comprehensively consider various
constraints, such as queue backlogs and deadlines.

The waiting time of the task backlog in the server queue is also an important consideration.
Deng et al. [19] explored the multiserver mobile edge computing Internet of Vehicles, which
solves the task scheduling optimization problem of minimizing the task completion time with
the specified cost. Chen et al. [20] proposed a hybrid dynamic scheduling scheme, including a
queue-based dynamic scheduling algorithm and time-based dynamic scheduling, to select the
server with the fastest response. To solve the problem of task execution delay on the mobile
edge network side, Wang et al. [21] used task scheduling to reduce the execution delay of tasks
in mobile edge networks and proposed a lightweight heuristic solution. In [22], considering
the inherent trade-off between communication and computational load, a stochastic load
scheduling framework was developed, and an enhanced Lagrangian method was utilized to
obtain the optimal computational load scheduling algorithm. Li et al. [23] proposed task
placement strategies and scheduling algorithms to reduce task calculation delay and response
time.

The application scenarios of autonomous vehicles also need to comprehensively consider
the special attributes of the task and the mobility of the vehicle. For the task scheduling
problem, it is also necessary to consider the reasonable selection of the task computing re-
sources on the edge server. To be suitable for the management of massive data access net-
works, the development of data processing has had a substantial impact on the demand and
evolution of infrastructure networks, which has enabled the expansion of a new paradigm of
edge computing. Lv et al. [24] elaborated an edge computing strategy from the perspective of
SDN and network function virtualization. The authors in [25-26] integrated a SDN and edge
computing framework into a vehicle network, focusing on improving the delay of vehicle
service. Zeng et al. [27] proposed a new SDN-based vehicle edge computing framework,
which introduced reputation to measure the contribution of each vehicle as a basis for
providing different quality of service. Papers [28-29] mainly study interaction modeling be-
tween two contributors optimized for two Stackelberg games. Mao et al. [30] proposed a
wirelessly powered mobile edge computing system.

Through research and analysis of the existing work, we identified deficiencies in com-
prehensive consideration factors in the task solutions generated by autonomous vehicles, such
as centralized management of resources, delay in returning task results, and urgency of tasks.
To better solve the task scheduling problem generated by autonomous vehicles, we compre-
hensively consider the attributes of the tasks and real-time scheduling in this paper so that the
reasonable execution and processing of computing tasks is the key issue in handling an au-
tonomous vehicle. The software-defined edge computing architecture is selected to complete
the centralized scheduling of resources, the tasks are classified according to the urgency of the
tasks, and the optimal BS task scheduling algorithm is designed to complete the processing of
autonomous vehicle tasks.

3528 Sun et al.: Emotion-aware Task Scheduling for Au-tonomous
Vehicles in Software-defined Edge Networks

3. System Description

3.1 System Model
The SDN architecture is an established paradigm. For example, related definitions are pre-
sented in [31-33]. However, in this paper, we integrate the SDN and edge computing to solve
the task scheduling problem in autonomous driving. In the following section, we introduce the
software-defined paradigm into edge computing and depict a framework of software-defined
edge networks for autonomous driving, as shown in Fig. 1. The framework includes the cloud
layer, terminal layer, and edge layer where the SDN controller is deployed. The edge server
and cloud center are connected via the backbone network, and the vehicle and the edge server
will communicate with the wireless link. We embed the edge computing network in the SDN
control layer and use the idea of separating the SDN control plane from the data plane to
logically realize the centralized management function of the edge computing network. The
framework not only achieves global information of edge network resources and optimize
resource allocation strategies but also demonstrates the characteristics of low latency, high
bandwidth, low energy consumption, and safety and reliability. The computing service of edge
networks sinks to the terminal, and the edge server and terminal data are transmitted via the
wireless network. The area where the edge server provides services for the terminal can be
described as a circular range with the geographic location, where the server is deployed as the
center and the wireless signal coverage length as the radius. Vehicles can hand over intensive
computing tasks, require high real-time performance, and exceed their processing capabilities
to the edge server for collaborative execution. Therefore, how to choose a suitable edge server
to assist the terminal in processing computing tasks is very important. The SDN controller has
the topology information of the edge network and the running state of the vehicles and can
flexibly control and schedule the resources of edge networks. The SDN controller and vehicles
are connected through the north-bound interface to provide services for applications, and the
SDN controller and edge infrastructure are connected through the southbound interface to
realize the update of global status information [34]. During the operation of the autonomous
vehicle, the SDN controller can allocate the optimal edge server for the terminal tasks that
need to be dispatched, process the tasks, and realize the smooth and safe operation of the
autonomous vehicle.

Fig. 1. Framework of software-defined edge networks for autonomous vehicles.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3529

In this paper, the emotion of the computing task of autonomous vehicles is used to char-

acterize the performance of the queuing of computing tasks. The longer the task remains in the
queue waiting for processing, the greater the emotion of the task. There is a certain correlation
between the emotion and the urgency of the task. When the urgency of the task is higher, the
execution constraint time of the task is shorter, and the emotion of the task is greater.

Different autonomous vehicle tasks have different types of computing tasks, constraint
times, and levels of urgency and emotion. The classification of computing tasks for autono-
mous vehicles is shown in Table 2. Computing tasks can be divided into three types: level-I
tasks, level-II tasks, and level-III tasks. Level-I tasks belong to the category of real-time and
extremely high security, such as collision protection, emergency braking, and blind-spot de-
tection. The emotion of level-I tasks is assigned a maximum. The urgency of noncontrol tasks,
such as navigation, call, music, and video, is relatively low. These tasks are at level II or level
III.

Table 2. Classification Table of calculation tasks for autonomous vehicles

Type of task Importance Urgency Emotionality

Collision protection, emergency braking,
blind spot detection, road selection Very important Ⅰ high

Navigation, call, voice, information important Ⅱ middle

Music, video, broadcasting, entertainment Generally, im-
portant Ⅲ low

The emotion of a task is related to the two basic attributes of its task category and queue
waiting time. The definition of task emotion is shown in Equation (12). The change in the
emotion of the three-level tasks with the queuing time is shown in Fig. 2. As the waiting time
of the tasks in the three types increases, the emotion of the tasks show an exponential increase,
and the tasks tend to stabilize after being backlogged in the queue for a certain period. The
slope k of the curve can indicate how quickly the task emotion changes with the queue time.
The slope 𝑘𝑘1 of the level-I curve is the largest, the slope 𝑘𝑘2 of the level-II curve is the second
largest, and the slope 𝑘𝑘3 of the level-III curve is the smallest. Taking into account the safety of
autonomous vehicles and the quality of experience, there is a certain upper bound for the
waiting times of tasks in queue times 𝑡𝑡1, 𝑡𝑡2, and 𝑡𝑡3. At this time, the emotions corresponding
to the three types of tasks are 𝑑𝑑1, 𝑑𝑑2, and 𝑑𝑑3.

3530 Sun et al.: Emotion-aware Task Scheduling for Au-tonomous
Vehicles in Software-defined Edge Networks

Fig. 2. Emotion vs. queuing time.

3.2 Problem description
To model the task scheduling for autonomous driving in the software-defined edge network
framework, the computing tasks are defined as

𝐽𝐽𝐽𝐽𝐽𝐽 = {𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐, 𝐽𝐽𝑟𝑟𝑠𝑠𝑟𝑟 , 𝐽𝐽𝑎𝑎𝑟𝑟𝑟𝑟, 𝐽𝐽𝑙𝑙𝑙𝑙𝑐𝑐} (1)

where 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the size of the task, 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐 is the number of CPU cycles required by the task, 𝐽𝐽𝑟𝑟𝑠𝑠𝑟𝑟
is the request time of the task, 𝐽𝐽𝑎𝑎𝑟𝑟𝑟𝑟 is the arrival time of the task, and 𝐽𝐽𝑙𝑙𝑙𝑙𝑐𝑐 is the spatial position
when the task is generated, which is represented by coordinates (X, Y). For convenience, the
main symbols in this paper are described in Table 3.

Table 3. Description of main symbols.

Notation Description

S Edge server set
V Autonomous driving vehicle set
T Task set

SNR SNR of transmission link
𝑃𝑃𝑣𝑣𝑘𝑘 Vehicle transmission power
ℎ𝑣𝑣,𝑠𝑠
𝑘𝑘 Channel gain
𝜎𝜎2 Gaussian white noise power
𝑅𝑅𝑣𝑣,𝑠𝑠
𝑘𝑘 Link transmission rate
B Channel bandwidth

𝑇𝑇𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 Time delay of task upload to BS
𝐸𝐸𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 Task upload energy consumption of BS
𝑇𝑇𝑠𝑠 Task execution time

𝑇𝑇𝑤𝑤 Queue waiting time of the task

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3531

𝑇𝑇𝑐𝑐𝑟𝑟𝑙𝑙 Task completion processing time
𝜗𝜗𝑐𝑐𝑟𝑟𝑢𝑢 Task urgency

w Energy consumption of vehicles
𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙
𝑠𝑠𝑗𝑗 Emotion value of the nearest server

𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙
𝐽𝐽 Emotion value of the task

3.2.1 Transmission Rate between Vehicles and BSs
In the software-defined edge autonomous driving network, high-speed communication be-
tween vehicles and BSs is carried out via the 5G network. Each vehicle generates several
computing tasks and is scheduled to the nearest or neighboring BS. Therefore, the task
scheduling decision of autonomous vehicles is defined as follows:

𝐴𝐴 = {𝑎𝑎𝑣𝑣,𝑠𝑠|𝑣𝑣 ∈ 𝑉𝑉, 𝑠𝑠 ∈ 𝑆𝑆} (2)

where 𝑎𝑎𝑣𝑣,𝑠𝑠 ∈ {0,1}, v belongs to the set V of autonomous vehicles, and s belongs to the set S of
edge servers. When 𝑎𝑎𝑣𝑣,𝑠𝑠 = 0, the computing task on vehicle v is scheduled to the server of the
nearest BS. When 𝑎𝑎𝑣𝑣,𝑠𝑠 = 1, the computing task on vehicle v is scheduled to the server of the
neighboring BS. Each edge server simultaneously provides services for multiple vehicles, but
a vehicle can only select one server for task scheduling at any time, and we obtain

∑ 𝑎𝑎𝑣𝑣,𝑠𝑠 ≤ 1𝑠𝑠∈𝑆𝑆 ,∀𝑣𝑣 ∈ 𝑉𝑉 (3)

Assuming that each edge server has k subchannels, the set of subchannels can be expressed
as K = {1, 2..., k}, the bandwidth of each subchannel is B, and the signal-noise ratio (SNR) of
the vehicle’s data transmission on subchannel k is expressed by

𝑆𝑆𝑆𝑆𝑅𝑅𝑣𝑣,𝑠𝑠
𝑘𝑘 = 𝑐𝑐𝑣𝑣𝑘𝑘ℎ𝑣𝑣,𝑠𝑠

𝑘𝑘

𝜎𝜎2
 (4)

where 𝑝𝑝𝑣𝑣𝑘𝑘 represents the data transmission power of vehicle v on channel k, ℎ𝑣𝑣,𝑠𝑠
𝑘𝑘 represents the

channel gain and 𝜎𝜎2 represents the Gaussian white noise power.
According to Shannon’s theorem [35], the computing task generated by vehicle v is

scheduled to server s of the BS, and when channel k is selected for data transmission, the
transmission rate 𝑅𝑅𝑣𝑣,𝑠𝑠

𝑘𝑘 of the link is

𝑅𝑅𝑣𝑣,𝑠𝑠
𝑘𝑘 = 𝐵𝐵𝑙𝑙𝐽𝐽𝑙𝑙2(1 + 𝑆𝑆𝑆𝑆𝑅𝑅𝑣𝑣,𝑠𝑠

𝑘𝑘) (5)

3.2.2. Delay and Energy Consumption of Upload Tasks to BS
When the vehicle generates a computing task and needs to send a request to the edge layer, its
uplink transmission delay is expressed as follows:

𝑇𝑇𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 = 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑅𝑅𝑣𝑣,𝑠𝑠
𝑘𝑘 𝑅𝑅

𝑞𝑞𝑣𝑣,𝑠𝑠

 (6)

where R represents the service range of the BS and 𝑞𝑞𝑣𝑣,𝑠𝑠 represents the link distance between
vehicle v and server s. The autonomous vehicle needs to consume some energy when trans-
mitting tasks. The transmission energy consumption 𝐸𝐸𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢is the product of the transmission
power and the transmission time, which is expressed as follows:

𝐸𝐸𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 = 𝑃𝑃𝑠𝑠
𝑡𝑡0𝑇𝑇𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 (7)

3532 Sun et al.: Emotion-aware Task Scheduling for Au-tonomous
Vehicles in Software-defined Edge Networks

where 𝑃𝑃𝑠𝑠
𝑡𝑡0 is the transmission power of the automatic driving vehicle transmission task at the

moment.

3.2.3. Delay and Energy Consumption for Processing Tasks
The time for processing tasks is expressed as the sum of the execution time of the task and the
waiting time of the task. The execution time 𝑇𝑇𝑠𝑠 of the task is the ratio of the calculation amount
𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 of the task to the calculation capacity cs of the edge server. We obtain

𝑇𝑇𝑠𝑠 = 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑠𝑠

 (8)

The waiting time 𝑇𝑇𝑤𝑤 of the task is the sum of the processing time from the current task to
the previous task. We have

𝑇𝑇𝑤𝑤 = ∑ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑠𝑠

𝑛𝑛
𝑗𝑗=1 (9)

where n = j -1, and ∑ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑠𝑠

𝑛𝑛
𝑗𝑗=1 is the sum of the processing time of the previous j -1 tasks. The

time 𝑇𝑇𝑐𝑐𝑟𝑟𝑙𝑙 for processing tasks is defined as

𝑇𝑇𝑐𝑐𝑟𝑟𝑙𝑙 = 𝑇𝑇𝑠𝑠 + 𝑇𝑇𝑤𝑤 (10)

The energy consumption Epro for completing tasks is expressed as

𝐸𝐸𝑐𝑐𝑟𝑟𝑙𝑙 = 𝐸𝐸𝑐𝑐𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇𝑐𝑐𝑟𝑟𝑙𝑙 (11)

where 𝐸𝐸𝑐𝑐 is the energy consumption of edge server nodes for computing tasks in unit time.

3.2.4. Emotion of Scheduling Tasks
During the period from the start of the task scheduling to the completion of the task scheduling,
as the waiting time in the queue increases and the urgency of the task itself is generated, the
task sentiment will produce an anxiety emotional state, which is positively related to the ur-
gency of the task. The related relationship-ship is expressed in Equation (12).

𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙(𝑡𝑡) = 𝜗𝜗𝑐𝑐𝑟𝑟𝑢𝑢
𝐽𝐽 ∫ 𝜉𝜉(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇𝑤𝑤

0 (12)

where J
urgϑ is the urgency of the task and 𝜉𝜉(𝑡𝑡) is the correlation between the urgency and the

emotion of the task. ∫ 𝜉𝜉(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇𝑤𝑤
0 is the emotional accumulation value during the period when

the task is waiting in the queue.

3.2.5. Total cost of the System
The total cost of the system is the linear weighted value of the cost of the total time and energy
consumption for scheduling tasks. The total time 𝑇𝑇𝑡𝑡𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙 of task scheduling is the sum of the
time 𝑇𝑇𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 spent on task uploading to the BS and the time 𝑇𝑇𝑐𝑐𝑟𝑟𝑙𝑙 spent on task scheduling. This
value will mainly include the following three parts: the transmission delay on the uplink, the
processing delay of the task scheduling in the nearest BS when 𝑎𝑎𝑣𝑣𝑠𝑠 = 1, and the task sched-
uling in the neighboring BS when 𝑎𝑎𝑣𝑣𝑠𝑠 = 0. The total cost 𝑇𝑇𝑡𝑡𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙 of energy consumption for
scheduling tasks is expressed as the sum of the energy consumption 𝐸𝐸𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 of the task up-
loading BS and the energy consumption 𝑇𝑇𝑐𝑐𝑟𝑟𝑙𝑙 of the task execution. From the above findings,
we have 𝑇𝑇𝑡𝑡𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙 = 𝑇𝑇𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 + 𝑇𝑇𝑐𝑐𝑟𝑟𝑙𝑙 and 𝐸𝐸𝑡𝑡𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙 = 𝐸𝐸𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 + 𝐸𝐸𝑐𝑐𝑟𝑟𝑙𝑙. The total cost of the system is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3533

defined by

𝐺𝐺(𝑡𝑡) = 𝑤𝑤1𝑇𝑇𝑡𝑡𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙 + (1 −𝑤𝑤1)𝐸𝐸𝑡𝑡𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙 (13)

where 𝑤𝑤1 and 1 −𝑤𝑤1 are the weight values of the total delay and the total energy consump-
tion of the system, respectively, and 𝑤𝑤1 ∈ (0,1).

To optimize the performance of the system, the optimization goal of minimizing the total
cost is modeled and expressed as follows:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = lim
𝑡𝑡→∞

1
𝑡𝑡
𝐸𝐸{∑ 𝐺𝐺(𝜏𝜏)𝑡𝑡−1

𝜏𝜏=0 } (14)

 𝑠𝑠. 𝑡𝑡. : 𝐶𝐶1:�𝑎𝑎𝑣𝑣,𝑠𝑠 ≤ 1,∀𝑣𝑣 ∈ 𝑉𝑉
𝑠𝑠∈𝑆𝑆

𝐶𝐶2 : �𝐸𝐸𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 + 𝐸𝐸𝑡𝑡𝑟𝑟𝑎𝑎𝑑𝑑𝑑𝑑𝑤𝑤𝑑𝑑 < 𝑤𝑤

In Equation (14), C1 indicates that one edge server can simultaneously serve multiple au-
tonomous vehicles, but only one server can be selected for scheduling the same task at any
time. C2 indicates that the sum of energy consumption on the uplink and downlink is less than
the vehicle’s energy consumption.

4. OBSTS Algorithm
In this section, we propose an algorithm for computing task scheduling for autonomous ve-
hicles, which is named OBSTS; its logical control structure is shown in Fig. 3. The autono-
mous vehicle prerequests the edge server to assist in computing task J, and the SDN controller
obtains the task scheduling request. The simplest scheduling strategy is to use the nearest
principle for the generated computing tasks, make the first scheduling decision, and pre-
schedule the vehicle to the edge server S1 associated with the BS by using the first come, first
served order in the task queue. Due to the different types and delay sensitivity of computing
tasks of autonomous vehicles, the emotions generated by tasks in the queue are also different.
Therefore, the SDN controller needs to update the edge server set and adjust the task sched-
uling strategy by analyzing indicators such as the waiting delay of tasks in the edge server
queue and the amount of task backlog according to the emotion of task J. Task J will make a
second-step scheduling decision. The SDN controller preschedules the task at the edge server
S3 and repeats the previous step until it identifies the best BS that meets the task scheduling.
Then, it uploads the task to the edge server with sufficient resources to calculate the task result
to achieve the goal of efficiently processing the task and reducing the execution delay of task
scheduling.

3534 Sun et al.: Emotion-aware Task Scheduling for Au-tonomous
Vehicles in Software-defined Edge Networks

Fig. 3. Logic control for scheduling tasks on the BS.

First, we need to initialize the computing task scheduling decision, calculate the distance
between each task to be scheduled and the server, select the closest server from the edge server
set, and then calculate the emotional tolerance of the computing tasks in the queue. The time is
compared until the edge server that meets the minimum delay and strong execution ability is
identified, and the scheduling decision of the computing task is returned to complete the
scheduling of the optimal BS to complete the task. The detailed process is presented as follows:
When the autonomous vehicle sends a new task command, the SDN controller receives the
command centralized control command. By calculating the execution time and sentiment of
the new task, the SDN controller schedules the task to the BS nearest the place where the
vehicle sends the command. The task enters the edge server queue and waits. The task
scheduling status process is divided into the following situations: if the task processing time is
less than the task sentiment, the task will continue to wait for scheduling in the BTS; if the
processing time of the task is greater than or equal to the emotional level of the task, the
nearest BTS cannot complete the scheduling of the new task. The SDN controller distributes
the task to the adjacent BS, recalculates the queuing time of the new task, compares the pro-
cessing time of the task with the queue task waiting time in the adjacent server, and determines
the best BTS to complete the task scheduling when the minimum delay and strong server
execution capability are met. The task scheduling completion instruction is sent to the SDN
controller.

 The OBSTS algorithm uses computing tasks as the research object. The execution process
needs to traverse a set of computing tasks. Its time complexity reflects the efficiency of the
algorithm, which is expressed as O(n), where n represents the number of computing tasks to be
scheduled. The pseudocode is shown in Algorithm 1.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3535

Algorithm 1: OBSTS Algorithm
Input：Computing task set J and edge server set S
Output：Computing task scheduling decision 𝑎𝑎𝑣𝑣,𝑠𝑠

1. Set 𝑎𝑎𝑣𝑣,𝑠𝑠 = 0
2. Calculate the distance between each task to be scheduled and the server
3. For J is not empty do
4. Select the nearest server 𝑆𝑆𝑗𝑗 from set S
5. Calculate the calculation tasks in the queue 𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙

𝐽𝐽 and 𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙
𝑆𝑆𝑗𝑗 (𝑡𝑡)

6. If 𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙
𝑆𝑆𝑗𝑗 (𝑡𝑡) > 𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙

𝐽𝐽 then
7. For 𝑆𝑆𝑗𝑗 neighboring BS do
8. Select the nearest server from neighboring BSs 𝑆𝑆𝑗𝑗+1
9. 𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙

𝑆𝑆𝑗𝑗 (𝑡𝑡) ← 𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙
𝑆𝑆𝑗𝑗+1(𝑡𝑡)

10. If 𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙
𝑆𝑆𝑗𝑗+1(𝑡𝑡) ≤ 𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙

𝐽𝐽 and the greatest resource demand then
11. 𝑆𝑆𝑗𝑗+1 can be executed, and the current task is removed
12. 𝑎𝑎𝑣𝑣,𝑠𝑠 = 1
13. End if
14. End for
15. Else
16. 𝑆𝑆𝑗𝑗 can execute, and the current task is removed
17. End if
18. End for
19. Return 𝑎𝑎𝑣𝑣,𝑠𝑠

5. Performance Evaluation

5.1. Experimental Setup
To verify the effectiveness of our proposed algorithm, we performed many experiments. The
hardware devices for these experiments include smart cars driven by Raspberry Pi 3 Model B+,
laptops, and desktop hosts. The operating system running on the Raspberry Pi development
board is Raspbian, and that running on desktop hosts and laptops is Ubuntu 16.04 64 bit. A
laptop computer simulates edge servers and BSs, a desktop host acts as an SDN controller, and
cloud computing is implemented by a high-performance desktop host. We use Java and Py-
thon language to realize the program coding of the experiment. After the experimental system
is started, the SDN controller initializes the state information and maintains the topology data
of the entire network. During the experiment, when the smart car terminal generates a com-
puting task that requires the assistance of the edge BS, it sends a task scheduling request to the
SDN controller. After the controller receives the request, it returns a request response message
to the vehicle and simultaneously starts the scheduling algorithm to allocate the best BS for the
computing task. In the experimental topology, latitude and longitude are used to identify
points in the entire area, and the geographic area abstracted by latitude and longitude data is
applied as the location range for vehicle operation and equipment deployment. The experi-
mental topology is shown in Fig. 4.

3536 Sun et al.: Emotion-aware Task Scheduling for Au-tonomous
Vehicles in Software-defined Edge Networks

Fig. 4. Experimental topology.

The network consists of one SDN controller and ten edge BSs. The edge BSs and SDN
controller are connected in a wired manner. If the BS signals have overlapping areas, the
adjacent BSs can wirelessly communicate. The experimental parameters are shown in Table
4.

Table 4. Experimental parameter settings.

Parameter Default value

Number of BSs 10

Number of edge servers 10

Number of SDN controllers 1

Task calculation amount (Kb) 1-1000

Edge node CPU computing capacity (GHz) [4, 6]

Edge node storage size (G) 64

CPU cycles (Number/bit) [400, 1000]

Edge node energy consumption (J/cycle) [1,8]× 10−10

Bandwidth size (MHz) 60

Gaussian white noise (dB) -100

5.2. Results
In this section, we discuss the queuing delay, processing delay, processing energy consump-
tion, task backlog, and other performance of the OBSTS algorithm, and the Random algorithm,
Nearest algorithm, and improved min-min algorithm (TPMM) [11] are compared. The random
algorithm randomly schedules computing task requests in the BS in the edge layer for pro-
cessing. The nearest algorithm schedules the computing task request in the nearest BS in the
edge layer for processing according to the Euclidean distance. The TPMM algorithm matches
the corresponding BS for computing and processing according to the data volume of the task
to be processed, the priority of the task, and the working status of the edge server.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3537

5.2.1. Queuing delay
The queuing delay for computing tasks of vehicles varies with the number of tasks, as shown
in Fig. 5. As the number of tasks increases, the OBSTS and TPMM, Random, and Nearest
algorithms change in a wave-like manner. When the number of computing tasks is small, the
edge server can allocate processors in time, and the queuing delay of computing tasks is low.
The OBSTS algorithm has the smallest growth rate with the increase in the number of tasks
compared with the other three algorithms, mainly because the OBSTS algorithm can better
reduce the queue length in the edge server and the queuing delay of computing tasks. The
average values of the queuing delay of the OBSTS, TPMM, Random, and Nearest algorithms
are 4.75 ms, 13.48 ms, 30.78 ms, and 68.88 ms, respectively. Compared with the other three
algorithms, the OBSTS algorithm reduces the task queuing average delay by 64.76%, 84.56%,
and 93.1%, respectively.

Fig. 5. Queuing delay.

5.2.2. Processing delay
The effect of the number of tasks on the processing delay is shown in Fig. 6. The processing
delay of the OBSTS algorithm is smaller than that of the other three algorithms, and the
changing trend is stable. The waiting delay of a task is mainly affected by factors such as the
task length of the queue in the edge server and the scheduling strategy. The processing delay of
the task is determined by the processing capacity of the CPU of the edge server. Reducing the
average queue length of the queue can significantly reduce the waiting time of the computing
task, thereby shortening the processing delay of the computing task and effectively completing
the scheduling of the computing task. The maximum processing delays of the OBSTS, TPMM,
Random, and Nearest algorithms are 38 ms, 45 ms, 91 ms, and 173 ms, respectively.

3538 Sun et al.: Emotion-aware Task Scheduling for Au-tonomous
Vehicles in Software-defined Edge Networks

Fig. 6. Processing delay.

5.2.3. Energy consumption
The relationship between energy consumption and the number of tasks is shown in Fig. 7.
With an increase in tasks, the processing energy consumption of the four algorithms shows an
overall increasing trend, but the OBSTS algorithm has the slowest increase, and the other three
algorithms have higher energy consumption, mainly due to the tasks in the edge server queues.
In the task number between 29 and 43, the average values for processing energy consumption
of the OBSTS, TPMM, random, and nearest algorithms are 0.0021 J, 0.0032 J, 0.0065 J, and
0.0183 J, respectively. The OBSTS algorithm reduces the processing energy consumption by
34.37%, 67.69%, and 88.52% compared with the TPMM, Random, and Nearest algorithms,
respectively.

Fig. 7. Energy consumption.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3539

5.2.4. Backlog
The queue length in the edge server reflects the backlog of computing tasks. When the task
backlog is smaller, the algorithm performance is better. The change in the backlog of tasks in
the server with the execution time is shown in Fig. 8. The four algorithms show a growth trend,
but the growth rate of the task backlog of the OBSTS algorithm is the smallest. The random
algorithm is affected by its random attributes. When the execution time falls between 36 ms
and 50 ms, the task backlog in the queue increases at a faster rate, and the growth rate is the
largest compared with the OBSTS, TPMM, and nearest algorithms. The slope of the curve is
defined as the backlogging rate of tasks. The backlog rates of the OBSTS, TPMM, Random,
and Nearest algorithms are approximately 1.4, 1.5, 1.8, and 2.9, respectively. In general, the
OBSTS algorithm effectively alleviates the load balancing problem of edge servers.

Fig. 8. Backlog.

Via the performance evaluation of the queuing delay of computing tasks, processing delay,
backlog of tasks in the edge server queue, and total system delay, different algorithms are
analyzed and compared, as shown in Table 5. On the whole, compared with the other three
algorithms, the OBSTS algorithm has the lowest average queuing delay, and the task backlog
rate of the queue in the edge server is only 1.4 per unit time. The OBSTS algorithm has the
highest execution efficiency and the best system stability.

Table 5. Comparison of different algorithms

Influencing factors OBSTS TPMM Random Nearest

Queuing delay 4.75 ms 13.48 ms 30.78 ms 68.88 ms
Processing delay 38 ms 45 ms, 91 ms 173 ms

Energy consumption 0.0021 J 0.0032 J 0.0065 J 0.0183 J

Backlog 1.4 1.5 1.8 2.9

stability Most stable Relatively
stable

Relatively
stable Unstable

effectiveness High Middle Low Low

3540 Sun et al.: Emotion-aware Task Scheduling for Au-tonomous
Vehicles in Software-defined Edge Networks

6. Conclusion and Future Work
Aimed at the computing task scheduling problem in an autonomous driving network, this
paper combines the advantages of a SDN and edge computing to design a framework of a
software-defined edge autonomous driving network. The tasks are classified according to the
importance of the computing tasks of autonomous vehicles, and the emotion model associated
with the task urgency is established. The emotion of the task is regarded as an important factor
to restrict the task scheduling, and the OBSTS algorithm is proposed. The experimental results
show that the OBSTS algorithm achieves the minimum total system delay and energy con-
sumption. In future research, we can further explore the cooperative interaction between au-
tonomous vehicles and the safety and reliability of tasks so that the computing task scheduling
of autonomous vehicles is more accurate and reliable.

References
[1] Q. Luo, Y. Cao, J. Liu, and A. Benslimane, “Localization and navigation in autonomous driving:

Threats and countermeasures,” IEEE Wireless Communications, vol. 26, no. 4, pp. 38-45, 2019.
Article (CrossRef Link)

[2] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of motion planning for
highway autonomous driving,” IEEE Transactions on Intelligent Transportation Systems, vol. 21,
no. 5, pp. 1826-1848, 2020. Article (CrossRef Link)

[3] Autonomous driving network solution white paper, May. 2, 2020. [Online] Available:
https://www-file.huawei.com/-/media/corporate/pdf/news/autonomous-driving-network-whitepa
per.pdf?la=zh.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: vision and challenges,” IEEE In-
ternet of Things Journal, vol. 3, no. 5, pp. 637-646, 2016. Article (CrossRef Link)

[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: the
communication perspective,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp.
2322-2358, 2017. Article (CrossRef Link)

[6] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing for autonomous driving:
opportunities and challenges,” Proceedings of the IEEE, vol. 107, no. 8. pp. 1697-1716, 2019.
Article (CrossRef Link)

[7] P. Yang, N. Zhang, S. Zhang, Li Yu, J. Zhang, and X. Shen, “Content popularity prediction to-
wards location-aware mobile edge caching,” IEEE Transactions on Multimedia, vol. 21, no. 4, pp.
915-929, 2019. Article (CrossRef Link)

[8] C. Tseng, F. Tseng, Y. Yang, C. Liu, and L. Chou, “Task scheduling for edge computing with agile
VNFs on-demand service model toward 5G and beyond,” Wireless Communications and Mobile
Computing, vol. 2018, 2018, Article ID 7802797. Article (CrossRef Link)

[9] Y. Li, and M. Chen, “Software-defined network function virtualization: a survey,” IEEE Access,
vol. 3, pp. 2542-2553, 2015. Article (CrossRef Link)

[10] Y. Kao, B. Krishnamachari, M. Ra, and F. Bai, “Hermes: latency optimal task assignment for
resource-constrained mobile computing,” IEEE Transactions on Mobile Computing, vol. 16, no.
11, pp. 3056-3069, 2017. Article (CrossRef Link)

[11] Y. Sahni, J. Cao, and L. Yang, “Data-aware task allocation for achieving low latency in collabo-
rative edge computing,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3512-3524, 2018.
Article (CrossRef Link)

http://doi.org/10.1109/MWC.2019.1800533
http://doi.org/10.1109/TITS.2019.2913998
http://doi.org/10.1109/JIOT.2016.2579198
http://doi.org/10.1109/COMST.2017.2745201
http://doi.org/10.1109/JPROC.2019.2915983
http://doi.org/10.1109/TMM.2018.2870521
http://doi.org/10.1155/2018/7802797
http://doi.org/10.1109/ACCESS.2015.2499271
http://doi.org/10.1109/TMC.2017.2679712
http://doi.org/10.1109/JIOT.2018.2886757

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3541

[12] Y. Liu, S. Wang, Q. Zhao, S. Du, A. Zhou, X. Ma, and F. Yang, “Dependency-aware task sched-
uling in vehicular edge computing,” IEEE Internet of Things Journal, vol. 7, no. 6, pp.4961-4971,
2020. Article (CrossRef Link)

[13] Y. Chen, Y. Zhang, Y. Wu, L. Qi, X. Chen, and X. Shen, “Joint task scheduling and energy
management for heterogeneous mobile edge computing with hybrid energy supply,” IEEE Internet
of Things Journal, vol. 7, no. 9, pp. 8419-8429, 2020. Article (CrossRef Link)

[14] H. Tan, Z. Han, X. Li, and F. C. M. Lau, “Online job dispatching and scheduling in edge-clouds,”
in Proc. of IEEE INFOCOM 2017, Atlanta, GA, USA, pp. 1-9, 2017. Article (CrossRef Link)

[15] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization of task scheduling and image
placement in fog computing supported software-defined embedded system,” IEEE Transactions
on Computers, vol. 65, no. 12, pp. 3702-3712, 2016. Article (CrossRef Link)

[16] Z. Han, H. Tan, X. Li, S. H.-C. Jiang, Y. Li, and F. C. M. Lau, “OnDisc: online latency-sensitive
job dispatching and scheduling in heterogeneous edge-clouds,” IEEE/ACM Transactions on
Networking, vol. 27, no. 6, pp. 2472-2485, 2019. Article (CrossRef Link)

[17] U. Saleem, Y. Liu, S. Jangsher, Y. Li, and T. Jiang, “Mobility-aware joint task scheduling and
resource allocation for cooperative mobile edge computing,” IEEE Transactions on Wireless
Communications, vol. 20, no. 1, pp. 360-374, 2021. Article (CrossRef Link)

[18] T. Zhao, S. Zhou, X. Guo, et al., “Tasks scheduling and resource allocation in heterogeneous cloud
for delay-bounded mobile edge computing,” in Proc. of IEEE ICC 2017, Paris, France, pp. 1-7,
May 2017. Article (CrossRef Link)

[19] Y. Deng, Z. Chen, X. Yao, S. Hassan, and J. Wu, “Task scheduling for smart city applications
based on multi-server mobile edge computing,” IEEE Access, vol. 7, pp. 14410-14421, 2019.
Article (CrossRef Link)

[20] X. Chen, N. Thomas, T. Zhan, and J. Ding, “A hybrid task scheduling scheme for heterogeneous
vehicular edge systems,” IEEE Access, vol. 7, pp. 117088-117099, 2019. Article (CrossRef Link)

[21] Z. Wang, Z. Zhao, G. Min, X. Huang, Q. Ni, and R. Wang, “User mobility aware task assignment
for mobile edge computing,” Future Generation Computer Systems, vol. 85, pp. 1-8, 2018.
Article (CrossRef Link)

[22] M. Zhao, W. Wang, Y. Wang, and Z. Zhang, “Load scheduling for distributed edge computing: a
communication-computation trade off,” Peer-to-Peer Networking and Applications, vol. 12, no. 5,
pp. 1418-1432, 2019. Article (CrossRef Link)

[23] C. Li, J. Bai, and J. Tang, “Joint optimization of data placement and scheduling for improving user
experience in edge computing,” Journal of Parallel and Distributed Computing, vol. 125, pp.
93-105, 2019. Article (CrossRef Link)

[24] Z. Lv, and W. Xiu, “Interaction of edge-cloud computing based on SDN and NFV for next gen-
eration IoT,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 5706-5712, 2019.
Article (CrossRef Link)

[25] L. Nkenyereye, L. Nkenyereye, S. M. R. Islam, C. A. Kerrache, M. Abdullah-Al-Wadud, and A.
Alamri, “Software defined network-based multi-access edge framework for vehicular networks,”
IEEE Access, vol. 8, pp. 4220-4234, 2019. Article (CrossRef Link)

[26] C. Huang, M. Chiang, D. Dao, W. Su, S, Xu, and H. Zhou, “V2V data offloading for cellular
network based on the software defined network (SDN) inside mobile edge computing (MEC)
architecture,” IEEE Access, vol. 6, pp. 17741-17755, 2018. Article (CrossRef Link)

[27] F. Zeng, Y. Chen, L. Yao, and J. Wu, “A novel reputation incentive mechanism and game theory
analysis for service caching in software-defined vehicle edge computing,” Peer-to-Peer Net-
working and Applications, vol. 14, no. 2, pp. 467-481, 2021. Article (CrossRef Link)

[28] F. Zeng, Q. Chen, L. Meng, and J. Wu, “Volunteer assisted collaborative offloading and resource
allocation in vehicular edge computing,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 22, no. 6, pp. 3247-3257, 2021. Article (CrossRef Link)

http://doi.org/10.1109/JIOT.2020.2972041
http://doi.org/10.1109/JIOT.2020.2992522
http://doi.org/10.1109/INFOCOM.2017.8057116
http://doi.org/10.1109/TC.2016.2536019
http://doi.org/10.1109/TNET.2019.2953806
http://doi.org/10.1109/TWC.2020.3024538
http://doi.org/10.1109/ICC.2017.7996858
http://doi.org/10.1109/ACCESS.2019.2893486
http://doi.org/10.1109/ACCESS.2019.2934890
http://doi.org/10.1016/j.future.2018.02.014
http://doi.org/10.1007/s12083-018-0695-4
http://doi.org/10.1016/j.jpdc.2018.11.006
http://doi.org/10.1109/JIOT.2019.2942719
http://doi.org/10.1109/ACCESS.2019.2962903
http://doi.org/10.1109/ACCESS.2018.2820679
http://doi.org/10.1007/s12083-020-00985-4
http://doi.org/10.1109/TITS.2020.2980422

3542 Sun et al.: Emotion-aware Task Scheduling for Au-tonomous
Vehicles in Software-defined Edge Networks

[29] F. Zeng, R. Wang, and J. Wu, “How mobile contributors will interact with each other in mobile
crowdsourcing with word of mouth mode,” IEEE Access, vol. 7, pp. 14523-14536, 2019.
Article (CrossRef Link)

[30] S. Mao, J. Wu, L. Liu, D. Lan, and A. Taherkordi, “Energy-efficient cooperative communication
and computation for wireless powered mobile-edge computing,” IEEE Systems Journal, vol. 16,
no. 1, pp. 287 - 298, 2022. Article (CrossRef Link)

[31] A. Mahmood, W. Zhang, and Q. Sheng, “Software-defined heterogeneous vehicular networking:
The architectural design and open challenges,” Future Internet, vol. 11, no. 3, pp. 70, 2019.
Article (CrossRef Link)

[32] A. Mahmood, B. Butler, and B. Jennings, “Towards efficient network resource management in
SDN-based heterogeneous vehicular networks,” in Proc. of 2018 IEEE 42nd Annual Computer
Software and Applications Conference, pp. 813-814, Jul. 2018. Article (CrossRef Link)

[33] S. R. Pokhrel, “Software defined Internet of vehicles for automation and orchestration,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 6, pp. 3890-3899, 2021.
Article (CrossRef Link)

[34] V. Nguyen, A. Brunstrom, K. Grinnemo, and J. Taheri, “SDN/NFV-based mobile packet core
network architectures: a survey,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp.
1567-1602, Apr. 2017. Article (CrossRef Link)

[35] Y. Mao, J. Zhang, and K. Letaief, “Joint task offloading scheduling and transmit power allocation
for mobile-edge computing systems,” in Proc. of IEEE WCNC 2017, San Francisco, CA, USA, pp.
1-6, Mar. 2017. Article (CrossRef Link)

https://ieeexplore.ieee.org/document/8616780
http://doi.org/10.1109/JSYST.2020.3020474
http://doi.org/10.3390/fi11030070
http://doi.org/10.1109/COMPSAC.2018.00133
http://doi.org/10.1109/TITS.2021.3077363
http://doi.org/10.1109/COMST.2017.2690823
http://doi.org/10.1109/WCNC.2017.7925615

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3543

Mengmeng Sun received the M.S. degree in software engineering from Hunan Normal
University, Hunan, China, in 2021. She is working in College of Cultural Communication,
Henan Vocational Institute of Arts Zhengzhou, China. Her research interests include edge
computing, software defined network, machine learning.

Lianming Zhang received his Ph.D. degree from the School of Information Science and
Engineering of Central South University, China, and his M.Sc. and B.Sc. degrees from the
Department of Physics of Hunan Normal University. He is currently a professor in the Col-
lege of Information Science and Engineering of Hunan Normal University, China. His main
research interests include network intelligence, software-defined networking, and edge
computing.

Jing Mei received the Ph.D in computer science from Hunan University, China, in 2015.
She is currently an assistant professor in the College of Information Science and Engineering
in Hunan Normal University. Her research interests include parallel and distributed compu-
ting, cloud computing, edge computing etc.

Pingping Dong received her B.S., M.S. and Ph.D degree from the School of Information
Science and Engineering at Central South University, China. Currently she is an associate
professor in the college of information science and engineering, Hunan Normal University,
China. Her research interests include protocol optimization and protocol design in wide area
networks (WANs) and wireless local area networks (WLANs).

