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Abstract 

 
Autonomous vehicles are gradually being regarded as the mainstream trend of future devel-
opment of the automobile industry. Autonomous driving networks generate many intensive 
and delay-sensitive computing tasks. The storage space, computing power, and battery ca-
pacity of autonomous vehicle terminals cannot meet the resource requirements of the tasks. In 
this paper, we focus on the task scheduling problem of autonomous driving in soft-
ware-defined edge networks. By analyzing the intensive and delay-sensitive computing tasks 
of autonomous vehicles, we propose an emotion model that is related to task urgency and 
changes with execution time and propose an optimal base station (BS) task scheduling 
(OBSTS) algorithm. Task sentiment is an important factor that changes with the length of time 
that computing tasks with different urgency levels remain in the queue. The algorithm uses 
task sentiment as a performance indicator to measure task scheduling. Experimental results 
show that the OBSTS algorithm can more effectively meet the intensive and delay-sensitive 
requirements of vehicle terminals for network resources and improve user service experience. 
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1. Introduction 

Autonomous driving is a technology for cooperatively manipulating cars in road environ-
ment perception, location calculation, and autonomous decision-making. Since the 1970s, 
autonomous driving technology has been investigated, and recent developments have been 
particularly remarkable. Google started developing self-driving vehicles in 2009 and demon-
strated a fully functional, autonomous driving prototype car in 2014 [1]. One of the most 
promising advances in automotive engineering and research—the development of self-driving 
cars—has spread across universities and the automotive industry worldwide over the past 
decade [2]. With the development of autonomous vehicles, the increase in the number of au-
tonomous driving terminals will generate massive amounts of data. According to Huawei’s 
forecast, approximately 180 ZB of new data will be generated worldwide every year by 2025 
[3]. The application of autonomous driving generates higher performance requirements for 
computing and storage resources in networks. 

Cloud computing has problems such as high energy consumption and poor real-time per-
formance due to the high round-trip time caused by the long-distance communication link. In 
contrast, edge computing is a three-layer computing model based on the cloud layer, edge 
layer, and terminal layer [4]. Edge computing does not need to transmit tasks to the cloud data 
center via long-distance communication links. Edge servers deployed near smart terminals and 
equipped with faster 5G wireless networks can exchange data within milliseconds and can 
provide low-latency and high-efficiency services to nearby terminal devices [5]. With these 
high-quality network characteristics, edge computing technology has good application pro-
spects in autonomous driving [6]. 

The task carried out by the autonomous vehicle has strict response time requirements due to 
its urgency and external environmental influence factors. However, due to factors such as 
numerous tasks, insufficient computing power, and limited battery capacity in autonomous 
vehicles, it is difficult to support intensive and delay-sensitive computing tasks. Therefore, it is 
a key issue to migrate these tasks to an edge server near the smart terminal for computing so 
that the edge server can execute and complete these delay-sensitive tasks for autonomous 
driving as much as possible. The simple scheduling algorithm migrates tasks to the nearest 
edge server using the principle of proximity. However, the computing capacity of the edge 
server is limited [7]. If numerous autonomous driving tasks are concentrated, the edge server 
may be overloaded. To avoid vehicle safety hazards, an important method to achieve load 
balancing is task scheduling [8]. The separation of the control plane and data plane of soft-
ware-defined networking (SDN) realizes the flexible management of complex networks [9]. 
The SDN can be effectively integrated with the edge computing system architecture with the 
advantages of global control and coordination to more flexibly manage network resources. In 
view of the problems between the execution ability and resource requirements of autonomous 
vehicle computing tasks and research, it is urgent to carry out task scheduling. In this paper, 
we integrate the respective advantages of SDN and edge computing and investigate scheduling 
strategies for computing tasks of autonomous vehicles in software-defined edge networks. The 
main contributions of this paper are listed as follows: 
• We propose a framework of software-defined edge autonomous driving networks. This 

framework integrates the advantages of SDN and edge computing. With the separation 
technology of the control plane and the data plane of the network equipment, the network 
resources are centrally managed, and the task scheduling decision is more effectively 
reached. 
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• We introduce the concept of emotion and establish an emotion model for scheduling tasks of 
autonomous vehicles as one of the innovations of this paper. By analyzing different cate-
gories of computing tasks for autonomous vehicles, an emotion model related to task ur-
gency is established. The emotion changes with the length of time that computing tasks with 
different urgency levels remain in the queue. As an important factor for constraining task 
scheduling, emotion satisfies the delay requirements of autonomous vehicles for computing 
tasks. 

• We develop an optimal base station (BS) task scheduling (OBSTS) algorithm for a soft-
ware-defined edge autonomous driving network. In the OBSTS algorithm, the SDN con-
troller allocates the optimal edge server resources for its prescheduling, compares the 
emotion generated by the task queue waiting time with the emotion of the task itself, and 
selects the best BS that meets the task scheduling.  
The remainder of this paper is organized as follows: We introduce the related work in 

Section 2. Section 3 describes the system model and its problem statement. In Section 4, we 
develop the OBSTS algorithm. Extensive experiments are conducted in Section 5. Section 6 
provides the conclusion and future work.  

2. Related Works 
With the rapid development of the Internet of Things, many researchers have performed much 
research on the architecture of edge computing. All references in related works are analyzed in 
Table 1. 

Table 1. Research analysis of related works 
 

Number Research content Pros and cons 

[10] The optimization goal is to minimize the 
total waiting time. In-depth research on optimization 

problems can add important in-
fluencing factors.  [11] A multistage greedy adjustment algo-

rithm is proposed. 

[12] An efficient task scheduling algorithm is 
developed. 

Paper [12-13] conducts good re-
search on task scheduling but can 
also optimize on latency and en-
ergy consumption for user result 
return. 

[13] 
A stochastic optimization problem con-
strained by queue stability and energy is 
formulated. 

[14-16] The factors affecting the total delay in 
the task scheduling process are analyzed. The impact of task result return 

delay on total delay is improved, 
and various constraints such as 
queue backlog and deadline during 
task scheduling can still be exam-
ined. 

[17] 
An architecture based on de-
vice-to-device cooperative mobility is 
proposed. 

[18] A scheme is proposed to maximize the 
task to meet the delay requirement. 

[19] Multiserver mobile edge computing 
Internet of Vehicles is researched. 

These papers have been optimized 
for the waiting time of the task 
backlog, and reasonable selection 
of task computing resources on [20] A hybrid dynamic scheduling scheme is 

proposed. 
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[21] A lightweight heuristic solution is pro-
posed. 

edge servers can be considered. 

[22] A random load scheduling framework is 
developed. 

[23] A task placement strategy and schedul-
ing algorithm are proposed. 

[24] 
Edge computing strategies using SDN 
and network functions virtualization are 
investigated. 

The attributes of tasks and re-
al-time scheduling is comprehen-
sively considered to minimize the 
total system delay and energy 
consumption. [25-26] 

SDN and edge computing frameworks 
are integrated into vehicle networks to 
improve vehicle service latency. 

[27] 
A reputation incentive mechanism based 
on software-defined vehicular edge 
computing is proposed. 

How edge servers filter from many 
services is an important research 
point. 

[28] A fast search algorithm based on genetic 
algorithm is proposed. The limitation is that each vehicle 

can only belong to one volunteer 
union. [29] 

An inviting algorithm for contributors is 
proposed to recruit cooperators through 
social closeness. 

[30] A wirelessly powered mobile edge 
computing system is proposed. 

Paper [30] focuses on minimizing 
total energy consumption in wire-
less power supply. 

Kao et al. [10] proposed a complete polynomial-time approximation scheme to solve the 
tradeoff between delay sensitivity and energy cost of mobile devices. The scheme uses a di-
rected graph to represent multiple tasks and minimizes the total waiting time as the optimiza-
tion goal. SahniLin et al. [11] investigated the assignment problem of joint scheduling of 
data-aware tasks and network cooperative flow edge computing and proposed a multistage 
greedy adjustment (MSGA) algorithm. The joint problem is mathematically modeled in this 
paper to minimize the overall completion time of the application. When addressing multitask 
scheduling problems, they are formulated as an NP-hard optimization problem. To solve the 
optimization problem, Liu et al. [12] developed an efficient task scheduling algorithm. The 
basic idea is to prioritize tasks to ensure the completion time constraints of applications and 
the processing dependencies of tasks and to reduce the average completion time of multiple 
applications. Chen et al. [13] established a stochastic optimization problem constrained by 
queue stability and energy in a two-layer edge computing system composed of a macro BS and 
multiple micro BSs and focused on joint optimization of task scheduling and energy man-
agement decision-making. However, their approach disregards the delay and energy con-
sumption of the result returning to the user after the task scheduling is completed. 

To improve the impact of the task result return delay on the total delay in the task sched-
uling process, the total weighted response time of task scheduling, including the delay caused 
by task placement, scheduling processing, task result return, and the delay caused by I/O in-
terruption, were comprehensively considered [14-16]. To fully consider end user mobility, 
Saleem et al. [17] proposed an edge computing architecture based on the device-to-device 
cooperation mobile, taking into account the user’s mobility, distributed resources, task at-
tributes, user equipment energy consumption, and other constraints. The architecture uses 
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mobile sensing adjacent idle resources to obtain low-complexity effective task scheduling, 
reducing the task calculation delay. However, it will be a challenge for multiple users of dif-
ferent applications to compete for shared resources. To solve the task scheduling and resource 
allocation problems of different users, Zhao et al. [18] separately analyzed the scheduling 
problem of delay-sensitive tasks in single-user and multiuser scenarios and proposed an op-
timization scheme that maximizes the probability of tasks meeting the delay requirements. The 
resource coordination between the edge cloud and the remote cloud improves the success rate 
of user tasks, but the task scheduling process does not comprehensively consider various 
constraints, such as queue backlogs and deadlines. 

The waiting time of the task backlog in the server queue is also an important consideration. 
Deng et al. [19] explored the multiserver mobile edge computing Internet of Vehicles, which 
solves the task scheduling optimization problem of minimizing the task completion time with 
the specified cost. Chen et al. [20] proposed a hybrid dynamic scheduling scheme, including a 
queue-based dynamic scheduling algorithm and time-based dynamic scheduling, to select the 
server with the fastest response. To solve the problem of task execution delay on the mobile 
edge network side, Wang et al. [21] used task scheduling to reduce the execution delay of tasks 
in mobile edge networks and proposed a lightweight heuristic solution. In [22], considering 
the inherent trade-off between communication and computational load, a stochastic load 
scheduling framework was developed, and an enhanced Lagrangian method was utilized to 
obtain the optimal computational load scheduling algorithm. Li et al. [23] proposed task 
placement strategies and scheduling algorithms to reduce task calculation delay and response 
time. 

The application scenarios of autonomous vehicles also need to comprehensively consider 
the special attributes of the task and the mobility of the vehicle. For the task scheduling 
problem, it is also necessary to consider the reasonable selection of the task computing re-
sources on the edge server. To be suitable for the management of massive data access net-
works, the development of data processing has had a substantial impact on the demand and 
evolution of infrastructure networks, which has enabled the expansion of a new paradigm of 
edge computing. Lv et al. [24] elaborated an edge computing strategy from the perspective of 
SDN and network function virtualization. The authors in [25-26] integrated a SDN and edge 
computing framework into a vehicle network, focusing on improving the delay of vehicle 
service. Zeng et al. [27] proposed a new SDN-based vehicle edge computing framework, 
which introduced reputation to measure the contribution of each vehicle as a basis for 
providing different quality of service. Papers [28-29] mainly study interaction modeling be-
tween two contributors optimized for two Stackelberg games. Mao et al. [30] proposed a 
wirelessly powered mobile edge computing system. 

Through research and analysis of the existing work, we identified deficiencies in com-
prehensive consideration factors in the task solutions generated by autonomous vehicles, such 
as centralized management of resources, delay in returning task results, and urgency of tasks. 
To better solve the task scheduling problem generated by autonomous vehicles, we compre-
hensively consider the attributes of the tasks and real-time scheduling in this paper so that the 
reasonable execution and processing of computing tasks is the key issue in handling an au-
tonomous vehicle. The software-defined edge computing architecture is selected to complete 
the centralized scheduling of resources, the tasks are classified according to the urgency of the 
tasks, and the optimal BS task scheduling algorithm is designed to complete the processing of 
autonomous vehicle tasks. 
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3. System Description 

3.1 System Model 
The SDN architecture is an established paradigm. For example, related definitions are pre-
sented in [31-33]. However, in this paper, we integrate the SDN and edge computing to solve 
the task scheduling problem in autonomous driving. In the following section, we introduce the 
software-defined paradigm into edge computing and depict a framework of software-defined 
edge networks for autonomous driving, as shown in Fig. 1. The framework includes the cloud 
layer, terminal layer, and edge layer where the SDN controller is deployed. The edge server 
and cloud center are connected via the backbone network, and the vehicle and the edge server 
will communicate with the wireless link. We embed the edge computing network in the SDN 
control layer and use the idea of separating the SDN control plane from the data plane to 
logically realize the centralized management function of the edge computing network. The 
framework not only achieves global information of edge network resources and optimize 
resource allocation strategies but also demonstrates the characteristics of low latency, high 
bandwidth, low energy consumption, and safety and reliability. The computing service of edge 
networks sinks to the terminal, and the edge server and terminal data are transmitted via the 
wireless network. The area where the edge server provides services for the terminal can be 
described as a circular range with the geographic location, where the server is deployed as the 
center and the wireless signal coverage length as the radius. Vehicles can hand over intensive 
computing tasks, require high real-time performance, and exceed their processing capabilities 
to the edge server for collaborative execution. Therefore, how to choose a suitable edge server 
to assist the terminal in processing computing tasks is very important. The SDN controller has 
the topology information of the edge network and the running state of the vehicles and can 
flexibly control and schedule the resources of edge networks. The SDN controller and vehicles 
are connected through the north-bound interface to provide services for applications, and the 
SDN controller and edge infrastructure are connected through the southbound interface to 
realize the update of global status information [34]. During the operation of the autonomous 
vehicle, the SDN controller can allocate the optimal edge server for the terminal tasks that 
need to be dispatched, process the tasks, and realize the smooth and safe operation of the 
autonomous vehicle. 

 
Fig. 1. Framework of software-defined edge networks for autonomous vehicles. 
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In this paper, the emotion of the computing task of autonomous vehicles is used to char-

acterize the performance of the queuing of computing tasks. The longer the task remains in the 
queue waiting for processing, the greater the emotion of the task. There is a certain correlation 
between the emotion and the urgency of the task. When the urgency of the task is higher, the 
execution constraint time of the task is shorter, and the emotion of the task is greater. 

Different autonomous vehicle tasks have different types of computing tasks, constraint 
times, and levels of urgency and emotion. The classification of computing tasks for autono-
mous vehicles is shown in Table 2. Computing tasks can be divided into three types: level-I 
tasks, level-II tasks, and level-III tasks. Level-I tasks belong to the category of real-time and 
extremely high security, such as collision protection, emergency braking, and blind-spot de-
tection. The emotion of level-I tasks is assigned a maximum. The urgency of noncontrol tasks, 
such as navigation, call, music, and video, is relatively low. These tasks are at level II or level 
III. 
 

Table 2. Classification Table of calculation tasks for autonomous vehicles 

Type of task Importance Urgency Emotionality 

Collision protection, emergency braking, 
blind spot detection, road selection Very important Ⅰ high 

Navigation, call, voice, information important Ⅱ middle 

Music, video, broadcasting, entertainment Generally, im-
portant Ⅲ low 

 

The emotion of a task is related to the two basic attributes of its task category and queue 
waiting time. The definition of task emotion is shown in Equation (12). The change in the 
emotion of the three-level tasks with the queuing time is shown in Fig. 2. As the waiting time 
of the tasks in the three types increases, the emotion of the tasks show an exponential increase, 
and the tasks tend to stabilize after being backlogged in the queue for a certain period. The 
slope k of the curve can indicate how quickly the task emotion changes with the queue time. 
The slope 𝑘𝑘1 of the level-I curve is the largest, the slope 𝑘𝑘2 of the level-II curve is the second 
largest, and the slope 𝑘𝑘3 of the level-III curve is the smallest. Taking into account the safety of 
autonomous vehicles and the quality of experience, there is a certain upper bound for the 
waiting times of tasks in queue times 𝑡𝑡1, 𝑡𝑡2, and 𝑡𝑡3. At this time, the emotions corresponding 
to the three types of tasks are 𝑑𝑑1, 𝑑𝑑2, and 𝑑𝑑3. 



3530                                                                                           Sun et al.: Emotion-aware Task Scheduling for Au-tonomous  
Vehicles in Software-defined Edge Networks 

 
Fig. 2. Emotion vs. queuing time. 

3.2 Problem description 
To model the task scheduling for autonomous driving in the software-defined edge network 
framework, the computing tasks are defined as 

𝐽𝐽𝐽𝐽𝐽𝐽 = {𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐, 𝐽𝐽𝑟𝑟𝑠𝑠𝑟𝑟 , 𝐽𝐽𝑎𝑎𝑟𝑟𝑟𝑟, 𝐽𝐽𝑙𝑙𝑙𝑙𝑐𝑐}                                       (1)
 

where 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the size of the task, 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐 is the number of CPU cycles required by the task, 𝐽𝐽𝑟𝑟𝑠𝑠𝑟𝑟 
is the request time of the task, 𝐽𝐽𝑎𝑎𝑟𝑟𝑟𝑟 is the arrival time of the task, and 𝐽𝐽𝑙𝑙𝑙𝑙𝑐𝑐 is the spatial position 
when the task is generated, which is represented by coordinates (X, Y). For convenience, the 
main symbols in this paper are described in Table 3. 

Table 3. Description of main symbols. 

Notation Description 

S Edge server set 
V Autonomous driving vehicle set 
T Task set 

SNR SNR of transmission link 
𝑃𝑃𝑣𝑣𝑘𝑘 Vehicle transmission power 
ℎ𝑣𝑣,𝑠𝑠
𝑘𝑘  Channel gain 
𝜎𝜎2 Gaussian white noise power 
𝑅𝑅𝑣𝑣,𝑠𝑠
𝑘𝑘  Link transmission rate 
B Channel bandwidth 

𝑇𝑇𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 Time delay of task upload to BS 
𝐸𝐸𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 Task upload energy consumption of BS 
𝑇𝑇𝑠𝑠 Task execution time 

𝑇𝑇𝑤𝑤 Queue waiting time of the task 
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𝑇𝑇𝑐𝑐𝑟𝑟𝑙𝑙 Task completion processing time 
𝜗𝜗𝑐𝑐𝑟𝑟𝑢𝑢 Task urgency 

w Energy consumption of vehicles 
𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙
𝑠𝑠𝑗𝑗  Emotion value of the nearest server 

𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙
𝐽𝐽  Emotion value of the task 

3.2.1 Transmission Rate between Vehicles and BSs 
In the software-defined edge autonomous driving network, high-speed communication be-
tween vehicles and BSs is carried out via the 5G network. Each vehicle generates several 
computing tasks and is scheduled to the nearest or neighboring BS. Therefore, the task 
scheduling decision of autonomous vehicles is defined as follows: 

𝐴𝐴 = {𝑎𝑎𝑣𝑣,𝑠𝑠|𝑣𝑣 ∈ 𝑉𝑉, 𝑠𝑠 ∈ 𝑆𝑆}                                                      (2) 

where 𝑎𝑎𝑣𝑣,𝑠𝑠 ∈ {0,1}, v belongs to the set V of autonomous vehicles, and s belongs to the set S of 
edge servers. When 𝑎𝑎𝑣𝑣,𝑠𝑠 = 0, the computing task on vehicle v is scheduled to the server of the 
nearest BS. When 𝑎𝑎𝑣𝑣,𝑠𝑠 = 1, the computing task on vehicle v is scheduled to the server of the 
neighboring BS. Each edge server simultaneously provides services for multiple vehicles, but 
a vehicle can only select one server for task scheduling at any time, and we obtain 

∑ 𝑎𝑎𝑣𝑣,𝑠𝑠 ≤ 1𝑠𝑠∈𝑆𝑆 ,∀𝑣𝑣 ∈ 𝑉𝑉                                                     (3) 

Assuming that each edge server has k subchannels, the set of subchannels can be expressed 
as K = {1, 2..., k}, the bandwidth of each subchannel is B, and the signal-noise ratio (SNR) of 
the vehicle’s data transmission on subchannel k is expressed by 

𝑆𝑆𝑆𝑆𝑅𝑅𝑣𝑣,𝑠𝑠
𝑘𝑘 = 𝑐𝑐𝑣𝑣𝑘𝑘ℎ𝑣𝑣,𝑠𝑠

𝑘𝑘

𝜎𝜎2
                                                            (4) 

where 𝑝𝑝𝑣𝑣𝑘𝑘 represents the data transmission power of vehicle v on channel k, ℎ𝑣𝑣,𝑠𝑠
𝑘𝑘  represents the 

channel gain and 𝜎𝜎2 represents the Gaussian white noise power. 
According to Shannon’s theorem [35], the computing task generated by vehicle v is 

scheduled to server s of the BS, and when channel k is selected for data transmission, the 
transmission rate 𝑅𝑅𝑣𝑣,𝑠𝑠

𝑘𝑘  of the link is 

𝑅𝑅𝑣𝑣,𝑠𝑠
𝑘𝑘 = 𝐵𝐵𝑙𝑙𝐽𝐽𝑙𝑙2(1 + 𝑆𝑆𝑆𝑆𝑅𝑅𝑣𝑣,𝑠𝑠

𝑘𝑘 )                                                (5) 

3.2.2. Delay and Energy Consumption of Upload Tasks to BS 
When the vehicle generates a computing task and needs to send a request to the edge layer, its 
uplink transmission delay is expressed as follows: 

𝑇𝑇𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 = 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑅𝑅𝑣𝑣,𝑠𝑠
𝑘𝑘 𝑅𝑅

𝑞𝑞𝑣𝑣,𝑠𝑠

                                                            (6) 

where R represents the service range of the BS and 𝑞𝑞𝑣𝑣,𝑠𝑠 represents the link distance between 
vehicle v and server s. The autonomous vehicle needs to consume some energy when trans-
mitting tasks. The transmission energy consumption 𝐸𝐸𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢is the product of the transmission 
power and the transmission time, which is expressed as follows: 

𝐸𝐸𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 = 𝑃𝑃𝑠𝑠
𝑡𝑡0𝑇𝑇𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢                                                       (7) 
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where 𝑃𝑃𝑠𝑠
𝑡𝑡0 is the transmission power of the automatic driving vehicle transmission task at the 

moment. 

3.2.3. Delay and Energy Consumption for Processing Tasks 
The time for processing tasks is expressed as the sum of the execution time of the task and the 
waiting time of the task. The execution time 𝑇𝑇𝑠𝑠 of the task is the ratio of the calculation amount 
𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 of the task to the calculation capacity cs of the edge server. We obtain 

𝑇𝑇𝑠𝑠 = 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑠𝑠

                                                                  (8) 

The waiting time 𝑇𝑇𝑤𝑤 of the task is the sum of the processing time from the current task to 
the previous task. We have 

𝑇𝑇𝑤𝑤 = ∑ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑠𝑠

𝑛𝑛
𝑗𝑗=1                                                            (9) 

where n = j -1, and ∑ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑠𝑠

𝑛𝑛
𝑗𝑗=1  is the sum of the processing time of the previous j -1 tasks. The 

time 𝑇𝑇𝑐𝑐𝑟𝑟𝑙𝑙 for processing tasks is defined as 

𝑇𝑇𝑐𝑐𝑟𝑟𝑙𝑙 = 𝑇𝑇𝑠𝑠 + 𝑇𝑇𝑤𝑤                                                        (10) 

The energy consumption Epro for completing tasks is expressed as 

𝐸𝐸𝑐𝑐𝑟𝑟𝑙𝑙 = 𝐸𝐸𝑐𝑐𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇𝑐𝑐𝑟𝑟𝑙𝑙                                                    (11) 

where 𝐸𝐸𝑐𝑐 is the energy consumption of edge server nodes for computing tasks in unit time. 

3.2.4. Emotion of Scheduling Tasks 
During the period from the start of the task scheduling to the completion of the task scheduling, 
as the waiting time in the queue increases and the urgency of the task itself is generated, the 
task sentiment will produce an anxiety emotional state, which is positively related to the ur-
gency of the task. The related relationship-ship is expressed in Equation (12). 

𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙(𝑡𝑡) = 𝜗𝜗𝑐𝑐𝑟𝑟𝑢𝑢
𝐽𝐽 ∫ 𝜉𝜉(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇𝑤𝑤

0                                              (12) 

where J
urgϑ  is the urgency of the task and 𝜉𝜉(𝑡𝑡) is the correlation between the urgency and the 

emotion of the task. ∫ 𝜉𝜉(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇𝑤𝑤
0  is the emotional accumulation value during the period when 

the task is waiting in the queue. 

3.2.5. Total cost of the System 
The total cost of the system is the linear weighted value of the cost of the total time and energy 
consumption for scheduling tasks. The total time 𝑇𝑇𝑡𝑡𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙 of task scheduling is the sum of the 
time 𝑇𝑇𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 spent on task uploading to the BS and the time 𝑇𝑇𝑐𝑐𝑟𝑟𝑙𝑙 spent on task scheduling. This 
value will mainly include the following three parts: the transmission delay on the uplink, the 
processing delay of the task scheduling in the nearest BS when 𝑎𝑎𝑣𝑣𝑠𝑠 = 1, and the task sched-
uling in the neighboring BS when 𝑎𝑎𝑣𝑣𝑠𝑠 = 0. The total cost 𝑇𝑇𝑡𝑡𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙 of energy consumption for 
scheduling tasks is expressed as the sum of the energy consumption 𝐸𝐸𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 of the task up-
loading BS and the energy consumption 𝑇𝑇𝑐𝑐𝑟𝑟𝑙𝑙 of the task execution. From the above findings, 
we have 𝑇𝑇𝑡𝑡𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙 = 𝑇𝑇𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 + 𝑇𝑇𝑐𝑐𝑟𝑟𝑙𝑙 and 𝐸𝐸𝑡𝑡𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙 = 𝐸𝐸𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 + 𝐸𝐸𝑐𝑐𝑟𝑟𝑙𝑙. The total cost of the system is 
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defined by 

𝐺𝐺(𝑡𝑡) = 𝑤𝑤1𝑇𝑇𝑡𝑡𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙 + (1 −𝑤𝑤1)𝐸𝐸𝑡𝑡𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙                                         (13) 

where 𝑤𝑤1 and 1 −𝑤𝑤1 are the weight values of the total delay and the total energy consump-
tion of the system, respectively, and 𝑤𝑤1 ∈ (0,1). 

To optimize the performance of the system, the optimization goal of minimizing the total 
cost is modeled and expressed as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = lim
𝑡𝑡→∞

1
𝑡𝑡
𝐸𝐸{∑ 𝐺𝐺(𝜏𝜏)𝑡𝑡−1

𝜏𝜏=0 }                                                  (14) 

 𝑠𝑠. 𝑡𝑡. : 𝐶𝐶1:�𝑎𝑎𝑣𝑣,𝑠𝑠 ≤ 1,∀𝑣𝑣 ∈ 𝑉𝑉
𝑠𝑠∈𝑆𝑆

 

𝐶𝐶2 : �𝐸𝐸𝑡𝑡𝑟𝑟𝑎𝑎𝑢𝑢𝑢𝑢 + 𝐸𝐸𝑡𝑡𝑟𝑟𝑎𝑎𝑑𝑑𝑑𝑑𝑤𝑤𝑑𝑑 < 𝑤𝑤 

In Equation (14), C1 indicates that one edge server can simultaneously serve multiple au-
tonomous vehicles, but only one server can be selected for scheduling the same task at any 
time. C2 indicates that the sum of energy consumption on the uplink and downlink is less than 
the vehicle’s energy consumption. 

4. OBSTS Algorithm 
In this section, we propose an algorithm for computing task scheduling for autonomous ve-
hicles, which is named OBSTS; its logical control structure is shown in Fig. 3. The autono-
mous vehicle prerequests the edge server to assist in computing task J, and the SDN controller 
obtains the task scheduling request. The simplest scheduling strategy is to use the nearest 
principle for the generated computing tasks, make the first scheduling decision, and pre-
schedule the vehicle to the edge server S1 associated with the BS by using the first come, first 
served order in the task queue. Due to the different types and delay sensitivity of computing 
tasks of autonomous vehicles, the emotions generated by tasks in the queue are also different. 
Therefore, the SDN controller needs to update the edge server set and adjust the task sched-
uling strategy by analyzing indicators such as the waiting delay of tasks in the edge server 
queue and the amount of task backlog according to the emotion of task J. Task J will make a 
second-step scheduling decision. The SDN controller preschedules the task at the edge server 
S3 and repeats the previous step until it identifies the best BS that meets the task scheduling. 
Then, it uploads the task to the edge server with sufficient resources to calculate the task result 
to achieve the goal of efficiently processing the task and reducing the execution delay of task 
scheduling. 
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Fig. 3. Logic control for scheduling tasks on the BS. 

First, we need to initialize the computing task scheduling decision, calculate the distance 
between each task to be scheduled and the server, select the closest server from the edge server 
set, and then calculate the emotional tolerance of the computing tasks in the queue. The time is 
compared until the edge server that meets the minimum delay and strong execution ability is 
identified, and the scheduling decision of the computing task is returned to complete the 
scheduling of the optimal BS to complete the task. The detailed process is presented as follows: 
When the autonomous vehicle sends a new task command, the SDN controller receives the 
command centralized control command. By calculating the execution time and sentiment of 
the new task, the SDN controller schedules the task to the BS nearest the place where the 
vehicle sends the command. The task enters the edge server queue and waits. The task 
scheduling status process is divided into the following situations: if the task processing time is 
less than the task sentiment, the task will continue to wait for scheduling in the BTS; if the 
processing time of the task is greater than or equal to the emotional level of the task, the 
nearest BTS cannot complete the scheduling of the new task. The SDN controller distributes 
the task to the adjacent BS, recalculates the queuing time of the new task, compares the pro-
cessing time of the task with the queue task waiting time in the adjacent server, and determines 
the best BTS to complete the task scheduling when the minimum delay and strong server 
execution capability are met. The task scheduling completion instruction is sent to the SDN 
controller. 

 The OBSTS algorithm uses computing tasks as the research object. The execution process 
needs to traverse a set of computing tasks. Its time complexity reflects the efficiency of the 
algorithm, which is expressed as O(n), where n represents the number of computing tasks to be 
scheduled. The pseudocode is shown in Algorithm 1. 
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Algorithm 1: OBSTS Algorithm 
Input：Computing task set J and edge server set S 
Output：Computing task scheduling decision 𝑎𝑎𝑣𝑣,𝑠𝑠  

1. Set 𝑎𝑎𝑣𝑣,𝑠𝑠 = 0 
2. Calculate the distance between each task to be scheduled and the server 
3. For J is not empty do 
4.     Select the nearest server 𝑆𝑆𝑗𝑗 from set S 
5.    Calculate the calculation tasks in the queue 𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙

𝐽𝐽  and 𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙
𝑆𝑆𝑗𝑗 (𝑡𝑡) 

6.     If  𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙
𝑆𝑆𝑗𝑗 (𝑡𝑡) > 𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙

𝐽𝐽  then 
7.         For 𝑆𝑆𝑗𝑗 neighboring BS do 
8.            Select the nearest server from neighboring BSs 𝑆𝑆𝑗𝑗+1 
9.            𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙

𝑆𝑆𝑗𝑗 (𝑡𝑡) ←  𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙
𝑆𝑆𝑗𝑗+1(𝑡𝑡) 

10.               If  𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙
𝑆𝑆𝑗𝑗+1(𝑡𝑡) ≤ 𝐷𝐷𝑠𝑠𝑒𝑒𝑙𝑙

𝐽𝐽  and the greatest resource demand then 
11.                  𝑆𝑆𝑗𝑗+1 can be executed, and the current task is removed 
12.  𝑎𝑎𝑣𝑣,𝑠𝑠 = 1 
13.               End if 
14.         End for  
15.     Else 
16.        𝑆𝑆𝑗𝑗 can execute, and the current task is removed 
17.     End if 
18. End for   
19. Return 𝑎𝑎𝑣𝑣,𝑠𝑠 

5. Performance Evaluation 

5.1. Experimental Setup 
To verify the effectiveness of our proposed algorithm, we performed many experiments. The 
hardware devices for these experiments include smart cars driven by Raspberry Pi 3 Model B+, 
laptops, and desktop hosts. The operating system running on the Raspberry Pi development 
board is Raspbian, and that running on desktop hosts and laptops is Ubuntu 16.04 64 bit. A 
laptop computer simulates edge servers and BSs, a desktop host acts as an SDN controller, and 
cloud computing is implemented by a high-performance desktop host. We use Java and Py-
thon language to realize the program coding of the experiment. After the experimental system 
is started, the SDN controller initializes the state information and maintains the topology data 
of the entire network. During the experiment, when the smart car terminal generates a com-
puting task that requires the assistance of the edge BS, it sends a task scheduling request to the 
SDN controller. After the controller receives the request, it returns a request response message 
to the vehicle and simultaneously starts the scheduling algorithm to allocate the best BS for the 
computing task. In the experimental topology, latitude and longitude are used to identify 
points in the entire area, and the geographic area abstracted by latitude and longitude data is 
applied as the location range for vehicle operation and equipment deployment. The experi-
mental topology is shown in Fig. 4. 
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Fig. 4. Experimental topology. 

The network consists of one SDN controller and ten edge BSs. The edge BSs and SDN 
controller are connected in a wired manner. If the BS signals have overlapping areas, the 
adjacent BSs can wirelessly communicate. The experimental parameters are shown in Table 
4. 

Table 4. Experimental parameter settings. 

Parameter Default value 

Number of BSs 10 

Number of edge servers 10 

Number of SDN controllers 1 

Task calculation amount (Kb) 1-1000 

Edge node CPU computing capacity (GHz) [4, 6] 

Edge node storage size (G) 64 

CPU cycles (Number/bit) [400, 1000] 

Edge node energy consumption (J/cycle) [1,8]× 10−10 

Bandwidth size (MHz) 60 

Gaussian white noise (dB) -100 

5.2. Results 
In this section, we discuss the queuing delay, processing delay, processing energy consump-
tion, task backlog, and other performance of the OBSTS algorithm, and the Random algorithm, 
Nearest algorithm, and improved min-min algorithm (TPMM) [11] are compared. The random 
algorithm randomly schedules computing task requests in the BS in the edge layer for pro-
cessing. The nearest algorithm schedules the computing task request in the nearest BS in the 
edge layer for processing according to the Euclidean distance. The TPMM algorithm matches 
the corresponding BS for computing and processing according to the data volume of the task 
to be processed, the priority of the task, and the working status of the edge server. 
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5.2.1. Queuing delay 
The queuing delay for computing tasks of vehicles varies with the number of tasks, as shown 
in Fig. 5. As the number of tasks increases, the OBSTS and TPMM, Random, and Nearest 
algorithms change in a wave-like manner. When the number of computing tasks is small, the 
edge server can allocate processors in time, and the queuing delay of computing tasks is low. 
The OBSTS algorithm has the smallest growth rate with the increase in the number of tasks 
compared with the other three algorithms, mainly because the OBSTS algorithm can better 
reduce the queue length in the edge server and the queuing delay of computing tasks. The 
average values of the queuing delay of the OBSTS, TPMM, Random, and Nearest algorithms 
are 4.75 ms, 13.48 ms, 30.78 ms, and 68.88 ms, respectively. Compared with the other three 
algorithms, the OBSTS algorithm reduces the task queuing average delay by 64.76%, 84.56%, 
and 93.1%, respectively. 

 
Fig. 5. Queuing delay. 

5.2.2. Processing delay 
The effect of the number of tasks on the processing delay is shown in Fig. 6. The processing 
delay of the OBSTS algorithm is smaller than that of the other three algorithms, and the 
changing trend is stable. The waiting delay of a task is mainly affected by factors such as the 
task length of the queue in the edge server and the scheduling strategy. The processing delay of 
the task is determined by the processing capacity of the CPU of the edge server. Reducing the 
average queue length of the queue can significantly reduce the waiting time of the computing 
task, thereby shortening the processing delay of the computing task and effectively completing 
the scheduling of the computing task. The maximum processing delays of the OBSTS, TPMM, 
Random, and Nearest algorithms are 38 ms, 45 ms, 91 ms, and 173 ms, respectively. 
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Fig. 6. Processing delay. 

5.2.3. Energy consumption 
The relationship between energy consumption and the number of tasks is shown in Fig. 7. 
With an increase in tasks, the processing energy consumption of the four algorithms shows an 
overall increasing trend, but the OBSTS algorithm has the slowest increase, and the other three 
algorithms have higher energy consumption, mainly due to the tasks in the edge server queues. 
In the task number between 29 and 43, the average values for processing energy consumption 
of the OBSTS, TPMM, random, and nearest algorithms are 0.0021 J, 0.0032 J, 0.0065 J, and 
0.0183 J, respectively. The OBSTS algorithm reduces the processing energy consumption by 
34.37%, 67.69%, and 88.52% compared with the TPMM, Random, and Nearest algorithms, 
respectively. 

 
Fig. 7. Energy consumption. 
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5.2.4. Backlog 
The queue length in the edge server reflects the backlog of computing tasks. When the task 
backlog is smaller, the algorithm performance is better. The change in the backlog of tasks in 
the server with the execution time is shown in Fig. 8. The four algorithms show a growth trend, 
but the growth rate of the task backlog of the OBSTS algorithm is the smallest. The random 
algorithm is affected by its random attributes. When the execution time falls between 36 ms 
and 50 ms, the task backlog in the queue increases at a faster rate, and the growth rate is the 
largest compared with the OBSTS, TPMM, and nearest algorithms. The slope of the curve is 
defined as the backlogging rate of tasks. The backlog rates of the OBSTS, TPMM, Random, 
and Nearest algorithms are approximately 1.4, 1.5, 1.8, and 2.9, respectively. In general, the 
OBSTS algorithm effectively alleviates the load balancing problem of edge servers. 

 
Fig. 8. Backlog. 

Via the performance evaluation of the queuing delay of computing tasks, processing delay, 
backlog of tasks in the edge server queue, and total system delay, different algorithms are 
analyzed and compared, as shown in Table 5. On the whole, compared with the other three 
algorithms, the OBSTS algorithm has the lowest average queuing delay, and the task backlog 
rate of the queue in the edge server is only 1.4 per unit time. The OBSTS algorithm has the 
highest execution efficiency and the best system stability. 

Table 5. Comparison of different algorithms 

Influencing factors OBSTS TPMM Random Nearest 

Queuing delay  4.75 ms 13.48 ms 30.78 ms  68.88 ms 
Processing delay 38 ms 45 ms, 91 ms 173 ms 

Energy consumption 0.0021 J 0.0032 J 0.0065 J 0.0183 J 

Backlog 1.4 1.5 1.8 2.9 

stability Most stable Relatively 
stable 

Relatively 
stable Unstable 

effectiveness High Middle Low Low 
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6. Conclusion and Future Work 
Aimed at the computing task scheduling problem in an autonomous driving network, this 
paper combines the advantages of a SDN and edge computing to design a framework of a 
software-defined edge autonomous driving network. The tasks are classified according to the 
importance of the computing tasks of autonomous vehicles, and the emotion model associated 
with the task urgency is established. The emotion of the task is regarded as an important factor 
to restrict the task scheduling, and the OBSTS algorithm is proposed. The experimental results 
show that the OBSTS algorithm achieves the minimum total system delay and energy con-
sumption. In future research, we can further explore the cooperative interaction between au-
tonomous vehicles and the safety and reliability of tasks so that the computing task scheduling 
of autonomous vehicles is more accurate and reliable. 
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